Package index
-
spruce_numeric_multiple()
spruce_class_multiple()
spruce_prob_multiple()
- Spruce up multi-outcome predictions
-
spruce_numeric()
spruce_class()
spruce_prob()
- Spruce up predictions
-
quantile_pred()
extract_quantile_levels()
as_tibble(<quantile_pred>)
as.matrix(<quantile_pred>)
- Create a vector containing sets of quantiles
-
model_frame()
- Construct a model frame
-
model_matrix()
- Construct a design matrix
-
model_offset()
- Extract a model offset
-
delete_response()
- Delete the response from a terms object
-
standardize()
- Standardize the outcome
-
new_model()
- Constructor for a base model
-
add_intercept_column()
- Add an intercept column to
data
-
weighted_table()
- Weighted table
-
fct_encode_one_hot()
- Encode a factor as a one-hot indicator matrix
-
scream()
- Scream
-
shrink()
- Subset only required columns
-
validate_column_names()
check_column_names()
- Ensure that
data
contains required column names
-
validate_no_formula_duplication()
check_no_formula_duplication()
- Ensure no duplicate terms appear in
formula
-
validate_outcomes_are_binary()
check_outcomes_are_binary()
- Ensure that the outcome has binary factors
-
validate_outcomes_are_factors()
check_outcomes_are_factors()
- Ensure that the outcome has only factor columns
-
validate_outcomes_are_numeric()
check_outcomes_are_numeric()
- Ensure outcomes are all numeric
-
validate_outcomes_are_univariate()
check_outcomes_are_univariate()
- Ensure that the outcome is univariate
-
validate_prediction_size()
check_prediction_size()
- Ensure that predictions have the correct number of rows
-
validate_predictors_are_numeric()
check_predictors_are_numeric()
- Ensure predictors are all numeric
-
default_formula_blueprint()
mold(<formula>)
- Default formula blueprint
-
default_recipe_blueprint()
mold(<recipe>)
- Default recipe blueprint
-
default_xy_blueprint()
mold(<data.frame>)
mold(<matrix>)
- Default XY blueprint
-
is_blueprint()
- Is
x
a preprocessing blueprint?
-
new_formula_blueprint()
new_recipe_blueprint()
new_xy_blueprint()
new_blueprint()
- Create a new preprocessing blueprint
-
new_default_formula_blueprint()
new_default_recipe_blueprint()
new_default_xy_blueprint()
- Create a new default blueprint
-
refresh_blueprint()
- Refresh a preprocessing blueprint
-
run_forge()
forge()
according to a blueprint
-
run_mold()
mold()
according to a blueprint
-
update_blueprint()
- Update a preprocessing blueprint
-
new_case_weights()
experimental - Extend case weights
-
is_case_weights()
experimental - Is
x
a case weights vector?
-
importance_weights()
experimental - Importance weights
-
new_importance_weights()
experimental - Construct an importance weights vector
-
is_importance_weights()
experimental - Is
x
an importance weights vector?
-
frequency_weights()
experimental - Frequency weights
-
new_frequency_weights()
experimental - Construct a frequency weights vector
-
is_frequency_weights()
experimental - Is
x
a frequency weights vector?
-
create_modeling_package()
use_modeling_deps()
use_modeling_files()
- Create a modeling package
-
get_data_classes()
- Extract data classes from a data frame or matrix
-
get_levels()
get_outcome_levels()
- Extract factor levels from a data frame
-
tune()
- Mark arguments for tuning
-
hardhat-example-data
example_train
example_test
- Example data for hardhat