
Package index
- 
          
spruce_numeric_multiple()spruce_class_multiple()spruce_prob_multiple() - Spruce up multi-outcome predictions
 
- 
          
spruce_numeric()spruce_class()spruce_prob() - Spruce up predictions
 
- 
          
quantile_pred()extract_quantile_levels()as_tibble(<quantile_pred>)as.matrix(<quantile_pred>) - Create a vector containing sets of quantiles
 
- 
          
model_frame() - Construct a model frame
 
- 
          
model_matrix() - Construct a design matrix
 
- 
          
model_offset() - Extract a model offset
 
- 
          
delete_response() - Delete the response from a terms object
 
- 
          
standardize() - Standardize the outcome
 
- 
          
new_model() - Constructor for a base model
 
- 
          
add_intercept_column() - Add an intercept column to 
data 
- 
          
weighted_table() - Weighted table
 
- 
          
fct_encode_one_hot() - Encode a factor as a one-hot indicator matrix
 
- 
          
scream() - Scream
 
- 
          
shrink() - Subset only required columns
 
- 
          
validate_column_names()check_column_names() - Ensure that 
datacontains required column names 
- 
          
validate_no_formula_duplication()check_no_formula_duplication() - Ensure no duplicate terms appear in 
formula 
- 
          
validate_outcomes_are_binary()check_outcomes_are_binary() - Ensure that the outcome has binary factors
 
- 
          
validate_outcomes_are_factors()check_outcomes_are_factors() - Ensure that the outcome has only factor columns
 
- 
          
validate_outcomes_are_numeric()check_outcomes_are_numeric() - Ensure outcomes are all numeric
 
- 
          
validate_outcomes_are_univariate()check_outcomes_are_univariate() - Ensure that the outcome is univariate
 
- 
          
validate_prediction_size()check_prediction_size() - Ensure that predictions have the correct number of rows
 
- 
          
validate_predictors_are_numeric()check_predictors_are_numeric() - Ensure predictors are all numeric
 
- 
          
default_formula_blueprint()mold(<formula>) - Default formula blueprint
 
- 
          
default_recipe_blueprint()mold(<recipe>) - Default recipe blueprint
 
- 
          
default_xy_blueprint()mold(<data.frame>)mold(<matrix>) - Default XY blueprint
 
- 
          
is_blueprint() - Is 
xa preprocessing blueprint? 
- 
          
new_formula_blueprint()new_recipe_blueprint()new_xy_blueprint()new_blueprint() - Create a new preprocessing blueprint
 
- 
          
new_default_formula_blueprint()new_default_recipe_blueprint()new_default_xy_blueprint() - Create a new default blueprint
 
- 
          
refresh_blueprint() - Refresh a preprocessing blueprint
 
- 
          
run_forge() forge()according to a blueprint
- 
          
run_mold() mold()according to a blueprint
- 
          
update_blueprint() - Update a preprocessing blueprint
 
- 
          
new_case_weights()experimental - Extend case weights
 
- 
          
is_case_weights()experimental - Is 
xa case weights vector? 
- 
          
importance_weights()experimental - Importance weights
 
- 
          
new_importance_weights()experimental - Construct an importance weights vector
 
- 
          
is_importance_weights()experimental - Is 
xan importance weights vector? 
- 
          
frequency_weights()experimental - Frequency weights
 
- 
          
new_frequency_weights()experimental - Construct a frequency weights vector
 
- 
          
is_frequency_weights()experimental - Is 
xa frequency weights vector? 
- 
          
create_modeling_package()use_modeling_deps()use_modeling_files() - Create a modeling package
 
- 
          
get_data_classes() - Extract data classes from a data frame or matrix
 
- 
          
get_levels()get_outcome_levels() - Extract factor levels from a data frame
 
- 
          
tune() - Mark arguments for tuning
 
- 
          
hardhat-example-dataexample_trainexample_test - Example data for hardhat