mold()
according to a blueprint
Source: R/mold.R
, R/blueprint-formula-default.R
, R/blueprint-recipe-default.R
, and 1 more
run-mold.Rd
This is a developer facing function that is only used if you are creating
your own blueprint subclass. It is called from mold()
and dispatches off
the S3 class of the blueprint
. This gives you an opportunity to mold the
data in a way that is specific to your blueprint.
run_mold()
will be called with different arguments depending on the
interface to mold()
that is used:
XY interface:
run_mold(blueprint, x = x, y = y)
Formula interface:
run_mold(blueprint, data = data)
Additionally, the
blueprint
will have been updated to contain theformula
.
Recipe interface:
run_mold(blueprint, data = data)
Additionally, the
blueprint
will have been updated to contain therecipe
.
If you write a blueprint subclass for new_xy_blueprint()
,
new_recipe_blueprint()
, or new_formula_blueprint()
then your run_mold()
method signature must match whichever interface listed above will be used.
If you write a completely new blueprint inheriting only from
new_blueprint()
and write a new mold()
method (because you aren't using
an xy, formula, or recipe interface), then you will have full control over
how run_mold()
will be called.
Usage
run_mold(blueprint, ...)
# S3 method for class 'default_formula_blueprint'
run_mold(blueprint, ..., data)
# S3 method for class 'default_recipe_blueprint'
run_mold(blueprint, ..., data)
# S3 method for class 'default_xy_blueprint'
run_mold(blueprint, ..., x, y)
Value
run_mold()
methods return the object that is then immediately returned from
mold()
. See the return value section of mold()
to understand what the
structure of the return value should look like.
Examples
bp <- default_xy_blueprint()
outcomes <- mtcars["mpg"]
predictors <- mtcars
predictors$mpg <- NULL
run_mold(bp, x = predictors, y = outcomes)
#> $predictors
#> # A tibble: 32 × 10
#> cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ℹ 22 more rows
#>
#> $outcomes
#> # A tibble: 32 × 1
#> mpg
#> <dbl>
#> 1 21
#> 2 21
#> 3 22.8
#> 4 21.4
#> 5 18.7
#> 6 18.1
#> 7 14.3
#> 8 24.4
#> 9 22.8
#> 10 19.2
#> # ℹ 22 more rows
#>
#> $blueprint
#> XY blueprint:
#> # Predictors: 10
#> # Outcomes: 1
#> Intercept: FALSE
#> Novel Levels: FALSE
#> Composition: tibble
#>
#>
#> $extras
#> NULL
#>