Skip to content

This family of spruce_*_multiple() functions converts multi-outcome predictions into a standardized format. They are generally called from a prediction implementation function for the specific type of prediction to return.

Usage

spruce_numeric_multiple(...)

spruce_class_multiple(...)

spruce_prob_multiple(...)

Arguments

...

Multiple vectors of predictions:

  • For spruce_numeric_multiple(), numeric vectors of equal size.

  • For spruce_class_multiple(), factors of "hard" class predictions of equal size.

  • For spruce_prob_multiple(), tibbles of equal size, which are the result of calling spruce_prob() on each matrix of prediction probabilities.

If the ... are named, then this name will be used as the suffix on the resulting column name, otherwise a positional index will be used.

Value

  • For spruce_numeric_multiple(), a tibble of numeric columns named with the pattern .pred_*.

  • For spruce_class_multiple(), a tibble of factor columns named with the pattern .pred_class_*.

  • For spruce_prob_multiple(), a tibble of data frame columns named with the pattern .pred_*.

Examples

spruce_numeric_multiple(1:3, foo = 2:4)
#> # A tibble: 3 × 2
#>   .pred_1 .pred_foo
#>     <int>     <int>
#> 1       1         2
#> 2       2         3
#> 3       3         4

spruce_class_multiple(
  one_step = factor(c("a", "b", "c")),
  two_step = factor(c("a", "c", "c"))
)
#> # A tibble: 3 × 2
#>   .pred_class_one_step .pred_class_two_step
#>   <fct>                <fct>               
#> 1 a                    a                   
#> 2 b                    c                   
#> 3 c                    c                   

one_step <- matrix(c(.3, .7, .0, .1, .3, .6), nrow = 2, byrow = TRUE)
two_step <- matrix(c(.2, .7, .1, .2, .4, .4), nrow = 2, byrow = TRUE)
binary <- matrix(c(.5, .5, .4, .6), nrow = 2, byrow = TRUE)

spruce_prob_multiple(
  one_step = spruce_prob(c("a", "b", "c"), one_step),
  two_step = spruce_prob(c("a", "b", "c"), two_step),
  binary = spruce_prob(c("yes", "no"), binary)
)
#> # A tibble: 2 × 3
#>   .pred_one_step$.pred_a .pred_two_step$.pred_a .pred_binary$.pred_yes
#>                    <dbl>                  <dbl>                  <dbl>
#> 1                    0.3                    0.2                    0.5
#> 2                    0.1                    0.2                    0.4
#> # ℹ 5 more variables: .pred_one_step$.pred_b <dbl>, $.pred_c <dbl>,
#> #   .pred_two_step$.pred_b <dbl>, $.pred_c <dbl>,
#> #   .pred_binary$.pred_no <dbl>