shrink()
subsets data
to only contain the required columns specified by
the prototype, ptype
.
Examples
# ---------------------------------------------------------------------------
# Setup
train <- iris[1:100, ]
test <- iris[101:150, ]
# ---------------------------------------------------------------------------
# shrink()
# mold() is run at model fit time
# and a formula preprocessing blueprint is recorded
x <- mold(log(Sepal.Width) ~ Species, train)
# Inside the result of mold() are the prototype tibbles
# for the predictors and the outcomes
ptype_pred <- x$blueprint$ptypes$predictors
ptype_out <- x$blueprint$ptypes$outcomes
# Pass the test data, along with a prototype, to
# shrink() to extract the prototype columns
shrink(test, ptype_pred)
#> # A tibble: 50 × 1
#> Species
#> <fct>
#> 1 virginica
#> 2 virginica
#> 3 virginica
#> 4 virginica
#> 5 virginica
#> 6 virginica
#> 7 virginica
#> 8 virginica
#> 9 virginica
#> 10 virginica
#> # ℹ 40 more rows
# To extract the outcomes, just use the
# outcome prototype
shrink(test, ptype_out)
#> # A tibble: 50 × 1
#> Sepal.Width
#> <dbl>
#> 1 3.3
#> 2 2.7
#> 3 3
#> 4 2.9
#> 5 3
#> 6 3
#> 7 2.5
#> 8 2.9
#> 9 2.5
#> 10 3.6
#> # ℹ 40 more rows
# shrink() makes sure that the columns
# required by `ptype` actually exist in the data
# and errors nicely when they don't
test2 <- subset(test, select = -Species)
try(shrink(test2, ptype_pred))
#> Error in validate_column_names(data, cols) :
#> The required column "Species" is missing.