validate - asserts the following:
The column names of
datamust contain alloriginal_names.
check - returns the following:
okA logical. Does the check pass?missing_namesA character vector. The missing column names.
Usage
validate_column_names(data, original_names, ..., call = current_env())
check_column_names(data, original_names)Value
validate_column_names() returns data invisibly.
check_column_names() returns a named list of two components,
ok, and missing_names.
Details
A special error is thrown if the missing column is named ".outcome". This
only happens in the case where mold() is called using the xy-method, and
a vector y value is supplied rather than a data frame or matrix. In that
case, y is coerced to a data frame, and the automatic name ".outcome" is
added, and this is what is looked for in forge(). If this happens, and the
user tries to request outcomes using forge(..., outcomes = TRUE) but
the supplied new_data does not contain the required ".outcome" column,
a special error is thrown telling them what to do. See the examples!
Validation
hardhat provides validation functions at two levels.
check_*(): check a condition, and return a list. The list always contains at least one element,ok, a logical that specifies if the check passed. Each check also has check specific elements in the returned list that can be used to construct meaningful error messages.validate_*(): check a condition, and error if it does not pass. These functions call their corresponding check function, and then provide a default error message. If you, as a developer, want a different error message, then call thecheck_*()function yourself, and provide your own validation function.
See also
Other validation functions:
validate_no_formula_duplication(),
validate_outcomes_are_binary(),
validate_outcomes_are_factors(),
validate_outcomes_are_numeric(),
validate_outcomes_are_univariate(),
validate_prediction_size(),
validate_predictors_are_numeric()
Examples
# ---------------------------------------------------------------------------
original_names <- colnames(mtcars)
test <- mtcars
bad_test <- test[, -c(3, 4)]
# All good
check_column_names(test, original_names)
#> $ok
#> [1] TRUE
#>
#> $missing_names
#> character(0)
#>
# Missing 2 columns
check_column_names(bad_test, original_names)
#> $ok
#> [1] FALSE
#>
#> $missing_names
#> [1] "disp" "hp"
#>
# Will error
try(validate_column_names(bad_test, original_names))
#> Error in validate_column_names(bad_test, original_names) :
#> The required columns "disp" and "hp" are missing.
# ---------------------------------------------------------------------------
# Special error when `.outcome` is missing
train <- iris[1:100, ]
test <- iris[101:150, ]
train_x <- subset(train, select = -Species)
train_y <- train$Species
# Here, y is a vector
processed <- mold(train_x, train_y)
# So the default column name is `".outcome"`
processed$outcomes
#> # A tibble: 100 × 1
#> .outcome
#> <fct>
#> 1 setosa
#> 2 setosa
#> 3 setosa
#> 4 setosa
#> 5 setosa
#> 6 setosa
#> 7 setosa
#> 8 setosa
#> 9 setosa
#> 10 setosa
#> # ℹ 90 more rows
# It doesn't affect forge() normally
forge(test, processed$blueprint)
#> $predictors
#> # A tibble: 50 × 4
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> <dbl> <dbl> <dbl> <dbl>
#> 1 6.3 3.3 6 2.5
#> 2 5.8 2.7 5.1 1.9
#> 3 7.1 3 5.9 2.1
#> 4 6.3 2.9 5.6 1.8
#> 5 6.5 3 5.8 2.2
#> 6 7.6 3 6.6 2.1
#> 7 4.9 2.5 4.5 1.7
#> 8 7.3 2.9 6.3 1.8
#> 9 6.7 2.5 5.8 1.8
#> 10 7.2 3.6 6.1 2.5
#> # ℹ 40 more rows
#>
#> $outcomes
#> NULL
#>
#> $extras
#> NULL
#>
# But if the outcome is requested, and `".outcome"`
# is not present in `new_data`, an error is thrown
# with very specific instructions
try(forge(test, processed$blueprint, outcomes = TRUE))
#> Error in forge(test, processed$blueprint, outcomes = TRUE) :
#> The following required columns are missing: ".outcome".
#> ℹ This indicates that `mold()` was called with a vector for `y`.
#> ℹ When this is the case, and the outcome columns are requested in
#> `forge()`, `new_data` must include a column with the automatically
#> generated name, `.outcome`, containing the outcome.
# To get this to work, just create an .outcome column in new_data
test$.outcome <- test$Species
forge(test, processed$blueprint, outcomes = TRUE)
#> $predictors
#> # A tibble: 50 × 4
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> <dbl> <dbl> <dbl> <dbl>
#> 1 6.3 3.3 6 2.5
#> 2 5.8 2.7 5.1 1.9
#> 3 7.1 3 5.9 2.1
#> 4 6.3 2.9 5.6 1.8
#> 5 6.5 3 5.8 2.2
#> 6 7.6 3 6.6 2.1
#> 7 4.9 2.5 4.5 1.7
#> 8 7.3 2.9 6.3 1.8
#> 9 6.7 2.5 5.8 1.8
#> 10 7.2 3.6 6.1 2.5
#> # ℹ 40 more rows
#>
#> $outcomes
#> # A tibble: 50 × 1
#> .outcome
#> <fct>
#> 1 virginica
#> 2 virginica
#> 3 virginica
#> 4 virginica
#> 5 virginica
#> 6 virginica
#> 7 virginica
#> 8 virginica
#> 9 virginica
#> 10 virginica
#> # ℹ 40 more rows
#>
#> $extras
#> NULL
#>
